魏毅教授
魏毅,華裔美籍復合材料知名專家。1984, 1987四川大學高分子材料科學與工程系學士、碩士,1993加拿大滑鐵盧大學化學工程博士,美國里海大學界面科學研究所博士后。長期任職于美國高科技跨國公司,2014年至今任東華大學民用航空復合材料中心特聘教授,紡織學院和材料學院博士生導師。美國化學會及先進復合材料學會會員,SAMPE上海分會副會長和陸上交通工具復合材料專業委員會主任。長期從事功能高分子及纖維增強復合材料的研究開發和工程化,研究方向涉及高性能復合材料樹脂體系、可重復成型可回收固塑體材料、熱固性復合材料增韌、納米復合材料、復合材料界面及界面域等方面,并成功實現了一批高新技術產品的產業化,產品應用領域包括航空航天、軌道交通、船舶、新能源汽車、太陽能等。
研究方向:
1. 高性能功能復合材料樹脂體系
2. 可重復成型可回收固塑體材料
3. 熱固性樹脂增韌及增韌機理
4. 先進復合材料界面及界面域
5. 先進復合材料樹脂及預浸料制造工程
榮譽及獲獎情況:
1. 上海市復合材料創新成就獎
2. 上海產學合作教育成果二等獎
3. 中國紡織工業聯合會教學成果一等獎
4. 國家科技進步三等獎
近年來承擔的主要科研項目:
1. 自動鋪放用干纖維材料體系開發與增韌機理研究
2. T300碳纖維織物預浸料工藝優化
3. 多功能碳纖維表面處理技術及配套高性能上漿劑開發
4. 低溫固化HJT導電銀漿系列開發
5. 復興號智能動車組碳纖維格柵研制
近年來發表的代表性論著、專利:
論文
1. Bio-Based and Solvent-Free Epoxy Vitrimers Based on Dynamic Imine Bonds with High Mechanical Performance,Polymers,2025, 17, 571
2. Toughening of Infusible Epoxy Resins by Core/Shell Nanoparticles Plus a Soluble Thermoplastic Polymer and Their Synergistic Mechanism at the Mesoscopic Morphological Level,ACS Applied Polymer Materials,Vol 7 Issue 5,2025
3. Quantitative Prediction of Polymer Dielectric Constants Using an Improved Mathematic Correlation Based on Molecular Polarity Components,Journal of Polymer Science, 2024, 0:1–13
4. Epoxy-imine vitrimer having low dielectric constant and high wave transmission efficiency for mobile communication applications, Polymer 2024, 313
5. The effect of different cyclic substituents on the properties of recyclable acetal-containing epoxy resins,Polymer,290,2024,126561
6. Composite Interlaminar Fracture Toughness Enhancement Using Electrospun PPO Fiber Veils Regulated by Functionalized CNTs. Polymers, 2023, 15, 3152
7. Hemiaminal dynamic covalent networks with rapid stress relaxation, reprocessability and degradability endowed by the synergy of disulfide and hemiaminal bonds,RSC Advances, 2023, 13, 28658-28665
8. A novel epoxy vitrimer with low dielectric constant at high-frequency, J Appl Polym Sci., 2023, 140:e53713
9. A vanillin-derived hardener for recyclable, degradable and self-healable high-performance epoxy vitrimers based on transimination,Materials Today Communications, Volume 35, 2023, 106178
10. Synthesis and structure-property relationship of epoxy vitrimers containing different acetal structures,Polymer,Volume 272, 2023, 125862
11. Optimizing mechanical and thermomechanical properties of the self‐healable and recyclable biobased epoxy thermosets,Journal of Polymer Research (2023) 30:70
12. Composite interlaminar fracture toughness imparted byelectrospun PPO veils and interleaf particles: a mechanistical comparison, Composite Structures,Volume 312, 2023, 116865
13. Developing Easy Processable, Recyclable, and Self-Healable Biobased Epoxy Resin through Dynamic Covalent Imine Bonds, ACS Applied Polymer Materials, 2023, 5, 1, 279–289, DOI: 10.1021/acsapm.2c01501
14. Hexachlorocyclotriphosphazene functionalized lignin as a sustainable and effective flame retardant for epoxy resins, Industrial Crops and Products, 187, Part B, 1, 2022, 115543
15. A novel bio-based, flame retardant and latent imidazole compound-Its synthesis and uses as curing agent for epoxy resins, Journal of Applied Polymer Science, 2022, 139(44)
16. A Quercetin-Derived Polybasic Acid Hardener for Reprocessable and Degradable Epoxy Resins Based on Transesterification, ACS Appl. Polym. Mater. 2022, 4, 8, 5708–5716
17. Synthesis of cyclotriphosphazene-containing imidazole as a thermally latent hardener for epoxy resins and its application in carbon fiber reinforced composites, Appl Polym Sci., 2022, 139 (41)
18. Review on intrinsically recyclable flame retardant thermosets enabled through covalent bonds, J Appl Polym Sci., 2022, 139 (27) e52493
19. Review of reversible dynamic bonds containing intrinsically flame retardant biomass thermosets, European Polymer Journal, 173 (2022) 111263
20. Review of intrinsically recyclable biobased epoxy thermosets enabled by dynamic chemical bonds, Polymer-Plastics Technology and Materials, 2022, 61 (16) 1740-1782, DOI: 10.1080/25740881.2022.2080559
21. Formulating novel halogen-free synergistic flame retardant epoxy resins for vacuum assisted resin infusion composites, Journal of Donghua University (English Edition), 2022, 39(2): 120-127
22. Effect of polymer nanoparticle morphology on fracture toughness enhancement of carbon fiber reinforced epoxy composites,Composites Part B, 2022, 234, 109749
23. A thermal latent imidazole complex containing copper (II) as the curing agent for an epoxy-based glass fiber composite. Textile Research Journal. 2022;92(11-12):1867-1875
24. Recyclable and reformable epoxy resins based on dynamic covalent bonds – Present, past, and future, Polymer Testing, 2021, 105-107420, doi.org/ 10.1016/j.polymertesting.2021.107420
25. Correlating the thermomechanical properties of a novel bio-based epoxy vitrimer with its crosslink density, Materials Today Communications, 2021, doi.org/10.1016/j.mtcomm.102814
26. Building Effective Core/Shell Polymer Nanoparticles for Epoxy Composite Toughening Based on Hansen Solubility Parameters, Nanotechnology Reviews, 2021, 10, 1183–96
27. Solar transparent radiators based on in-plane worm-like assemblies of metal nanoparticles, Solar Energy Materials And Solar Cells, 2021,219:110796
28. Tailoring Broad-Band-Absorbed Thermoplasmonic 1D Nanochains for Smart Windows with Adaptive Solar Modulation, ACS Applied Materials and Interfaces, 2021, 13(4)
29. 聚磷酸銨-三聚氰胺-三嗪成炭劑協同阻燃改性環氧樹脂及玻璃纖維增強樹脂復合材料, 復合材料學報,2021, 38(9): 2803-2813
30. Reprocessable, Reworkable, and Mechanochromic Polyhexahydrotriazine Thermoset with Multiple Stimulus Responsiveness, Polymers 2020, 12, 2375; doi:10.3390/polym12102375
31. Impressive epoxy toughening by a structure-engineered core/shell polymer nanoparticle, Composites Sci. and Tech., 2020, 199, 108364
32. Interlaminar Fracture Toughness of Carbon-Fiber-Reinforced Epoxy Composites Toughened by Poly(phenylene oxide) Particles, ACS Applied Polymer Materials, 2020, 2, 8, 3114–3121
33. A Comprehensive Study on the Mechanical Properties of Different 3D Woven Carbon Fiber-Epoxy Composites, Materials, 2020, 13(12):2765
34. An imine-containing epoxy vitrimer with versatile recyclability and its application in fully recyclable carbon fiber-reinforced composites, Composites Sci. and Tech., 2020, 199, 108314
35. Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability, Macromolecules, 2020, 53, 621-630
36. Welding and reprocessing of disulfide‐containing thermoset epoxy resin exhibiting behavior reminiscent of a thermoplastic, J. of Applied Polymer Sci., 2020, 10.1002, 49541
37. 不同尺度片狀氮化硼改性環氧樹脂復合材料性能研究,《航空制造技術》,2020-01
38. A novel liquid imidazole-copper (II) complex as a thermal latent curing agent for epoxy resins, Polymer, 2019, 178:121586.
39. The Failure Mechanism of Composite Stiffener Components Reinforced with 3D Woven Fabrics, Materials 2019, 12, 2221.
40. Hierarchical assembly of silver and gold nanoparticles in two-dimension: Toward fluorescence enhanced detection platforms, Applied Surface Science, 2019, 476, 1072-1078
41. A Comparative Study on Interlaminar Properties of L shaped Two Dimensional (2D) and Three Dimensional (3D) Woven Composites, Applied Composite Materials, 2019, 26:723-744.
42. Recyclable Carbon Fiber Reinforced Polyimine Resin Composites, SAMPE Joural, 2019, Jan/Feb Issue, 20-28.
43. Influence of graphene oxide with different oxidation levels on the properties of epoxy composites, Composite Sci. Technol., 2018, 161: 74-84.
44. Effects of styrene-acrylic sizing on the mechanical properties of carbon fiber thermoplastic towpregs and their composites., Molecules, 2018, 23: 547.
45. A one-component, fast-cure and economical epoxy resin system suitable for liquid molding of automotive composite parts, Materials, 2018, 11: 685.
46. Effects of graphene-oxide-modified coating on the properties of carbon-fiber-reinforced polypropylene composites, Coating, 2018, 8: 149.
47. Fast-curing halogen-free flame-retardant epoxy resins and their application in glass fiber-reinforced composites, Textile Research Journal, doi.org/10.1177/ 0040517518819840, 2018
48. A Comparative Study on Interlaminar Properties of L-shaped Two-Dimensional (2D) and Three-Dimensional (3D) Woven Composites, Applied Composite Materials, doi.org/10.1007/s1044, 2018.
49. 碳纖維-氧化石墨烯/環氧樹脂復合材料的制備及表征,復合材料學報,2018,35,1691-1699.
50. 不同結構厚截面三維機織碳纖維復合材料的彎曲性能對比,紡織學報, 2017, 38(9):66-71.
專利
1、 CN114853984B,一種共價鍵動態交換催化劑的應用以及一種可重復成型可降解回收的改性環氧樹脂,2022
2、 CN113150501B,一種用于真空灌注成型的苯并噁嗪阻燃改性環氧樹脂及制備方法,2021
3、 CN112920379B,環氧樹脂單體及其中間體、制備方法、環氧樹脂和回收方法,2021
4、 CN110734537B,一種潛伏性無鹵阻燃型環氧樹脂固化劑、環氧樹脂預浸料及碳纖維復合材料,2020
5、 CN110386907B,一種含亞胺鍵的環氧樹脂單體及其制備方法和應用,2019
6、 CN110272686B,一種低鹵快速固化導電膠組合物及其制備方法,2019
7、 CN110003443B,一種可回收型環氧樹脂及其制備和回收方法,2019
8、 CN108774310B,一種改性咪唑類環氧樹脂潛伏型固化劑、制備方法及應用,2018
9、 CN108384191B,一種低粘度高耐熱增韌環氧樹脂組合物,2018
10、CN108384188B,一種基于工程塑料非織造布的預浸料及其應用,2018
主要學術兼職:
國際先進材料與制造工程學會/SAMPE上海分會副會長
聯系電話:13601947468 E-MAIL:weiy@dhu .edu.cn